FLUID FLOW BETWEEN A ROTATING DISK
AND A FIXED WALL

M. I. Tsaplin UDC 532,526

The results of a theoretical investigation of the fluid flow in the gap between a rotating disk
and a fixed wall are presented. The variations of the rate of twisting of the fluid and the sta-
tistical pressure along the radius are analyzed for the case of centripetal flow.

A knowledge of the rate of twisting of the fluid flowing past the rotating disk and of its pressure change
is necessary for computing the thermal state of turbine disks and also for a more accurate determination of
the total temperature and the friction at the heat-exchange surface.

The flow between a rotating disk and a fixed wall in the presence of cross flow from the center to the
periphery and from the periphery to the center has been investigated in a number of studies. For example,
in [1] the particular case is investigated where the friction at the wall and the disk are equal and the azi-
muthal velocity of air at the midpoint of the gap is always smaller than that of the disk (Vu/wr <1,

In real conditions the coefficients of friction at the wall and the disk cannot be equal. As shown in
[2], the relative azimuthal velocity Vy;/wr can change in wide limits depending on the magnitude of the cross
flow and, as is well known, the coefficients of friction can be equal only for Vy/wr = 0.5.

In [3] the problem is solved in a more general formulation, when the frictions at the wall and the disk
are not equal. However, in this work the effect of compressibility of the fluid in the radial flow is not taken
into consideration. ‘

We consider the flow in a relatively large gap between a fixed wall and a rotating disk in the presence
of cross flow both from the center to the periphery (centrifugal flow) and from the periphery to the center
(centripetal flow) when the frietional drag from the radial component of the velocity can be disregarded. In
view of the fact that an exact solution of this problem is not possible, here we carry out the investigation
under the following simplifying assumptions:

the flow is taken to be one-dimensional without considering the secondary phenomena;
the coefficient of friction is constant along the radius;

the friction at the wall and the disk results only in a change of the momentum of the fluid in the azi-
muthal direction; '

the compressibility of the fluid is taken into consideration only for the flow in the radial direction.

Under these assumptions the change in the moment of momentum of an annular element dr under the
action of frictional forces at the wall and the disk can be expressed in the form:

A. For centripetal flow
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Fig. 1. Variation of relative twisting of the fluid along the

gadius in centgipetal flow. Continuous lines, E = 1.5;_ dashes,
£=0.667: 1) Vu,1 =08 1H0: 1Ya=10; 2)1; 3)0.1.

In these equations the sign of the first term on the right hand side is taken positive or negative depend-

ing on the magnitude and direction of the initial twisting of the fluid. Writing these equations in dimension-
less form and introducing the notations

eo fogoku TR gV
ry Eq ) my - or

r
we obtain:

A. For centripetal flow

Vi <1, V> 1
-4 2 — V) - 2
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B. For centrifugal flow

Vo<1, Vyu>1
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Here
17’“’1 = Y and V, , = Yun.
or, - e

is the initial relative twist of the fluid.

Equations (3) and (4) are Riccati type equations; as is well known, these equations cannot be solved
directly in an analytical form.

Introducing the notation y = x2\7u for simplifying writing and using a substitution of the form
2 _ - Y
Z=exp|:4_—j‘a(—x—y—{—gi)dxil, (5)
: 2 2
after some manipulations we obtain the following differential equations:
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As is well known, the general solution of a second order equa-
! tion can be written in the form
Z(x) = C,Z, (x) + CoZ, (%), : (8)
Equations (6) and (7) are Whittaker type equations and can be
solved using power series. Without discussing the characteristics
0 o 0% = of the method in detail, which can be found in any appropriate text
22— 5 book, we give only the final formulas for determining the rate of
// 4 4 twisting at the midpoint of the gap:
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. - L. . Here after contraction by C; a single integration constant D = C,/Cy
Flg‘ . 2. Varlatlo-n of relative is obtained. Constant D must be determined from the following
twisting of the fluid along the ra- boundary conditions:
dius in centripetal flow. Contin- B -
uous curves a = 10;_dashes, a x =1, Vy = Vy,4 for centripetal flow,
=1; £=0.667: 1) Vy4=—1 2) X = Xg {,u = \711 o for centrifugal flow.

—0.8; 3) —0.6; 4) —0.4; 5) —0.2.
The above formulas can be used for computing the rate for all

values of Vu 1 Vu o» and E except the case Vy,1 <1and £=1and
also Vu =<1land £ =1. For these values of £ Egs. (9) and (10) become mapphcable. These particular
cases correspond to the conditions investigated in [1}.

Computations using the results of 4] were carried out in order to check the formulas for £ = 1 and to
control the correctness of the program compiled for the computer. In this connection it must be pointed
out that in [4] and [5] fluid flow between two rotating disks with identical velocity was investigated. The
same result can be obtained from the present investigation if we take 5 =0 ({i.e., absence of friction at the
fixed wall) and the effect of interaction with the rotating disk is doubled. From a formal point of view for
these conditions Egs. (6) and (7) reduce to the form investigated in 4] and [5].

A comparison of the results of the computation using the formulas of the present work with the re-
sults of [4] showed no disagreements.

For determining the pressure in the fluid flowing by the rotating disk and the fixed wall it is necessary
to consider the change of the total momentum of the flow in the meridional plane.

In the cooling systems for the disks of modern gas turbines the amount of heating of the cooling air
is relatively small and therefore in the first approximation the effect of the nonisothermal nature of the
flow can be disregarded. Thus the momentum equation will have the form [4]

%-L V.4V, — V‘z‘.dr. (11)
Using the continuity equation and the equation of state
-2 (FoV) =0, | 12
EB _ g0 do
P o (13)

and assuming that the width of the gap remains constant along the radius, we obtain the following expres-
sion for computing the pressure distribution in the centripetal flow:
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Fig. 3. Variation of relative pressure along the radius in cen~
tripetal flow. Continuous curves, ¢ = 0.1 dashes, a = 1.0;
dash-dots, a = 10; £ = 0.667: I)l—Vui-OS 2) 0.4; 3) 0; II)
1Vu1——1 2) —0.6; 3) —0.2.
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here the index 1 denotes the parameters corresponding to r = ry (or x = 1). Proceeding in the same way
and denoting by index 0 the parameters corresponding to r = r;, we obtain the computatlonal formula for
the centrifugal flow
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Here we have introduced the following dimensionless parameters:
zj,l = erlpy px,ﬂ = P/P,, Mr,l = VT»/asw
‘Mu,1 = 0ry/fgo, Mr,o = Vio/0s0 Mu,o QF o/ Ggon
In the case of flow of an incompressible fluid the corresponding formulas are
V2 1 ; 1—2 o 2P, =
Via (7 — 1 ) 4+ 2 Syuxdx = PR (1— P (16)
for the centripetal flow and
X
2 2N 2 [ 2P 1
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for the centrifugal.

Knowing the values of I;X,1 and st,o the force acting on the rotating disk or the fixed wall can be de-
termined.

In order to illustrate the method discussed above we carried out a numerical investigation for the
case of centripetal flow. As is well known, this type of flow is encountered in the breaking of a twisted
gas between turbine stages, in a sample of cooling air behind the blade of a centrifugal compressor, and
in such other cases.

Three parameters a, \711,1, and E affect the nature of distribution of the relative velocity along the
radius of the disk.

The graph of the variation of the relative rate of twisting of the fluid in the gap is shown in Fig. 1I
for three values of parameter a, differing by an order of magnitude. Tt is evident from the graph that for
a = 1 for large mass flow rates with other conditions remaining equal the nature of variation of the rela-
tive rate along the radius remains practically unchanged. This result is explained by the fact that the initial
moment of momentum of the fluid flowing into the gap is sufficiently large compared to the work done by
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frictional forces at the wall and disk. Therefore the nature of variation of the relative rate of twisting is
close to the law Vyx? = const.

With the decrease in the flow rate (@ > 1) the work of the frictional forces may cause significant change
in the nature of twisting of the fluid along the radius; with the increase of the drag coefficient at the fixed
wall compared to the rotating disk (¢ > 1) a noticeable decrease of the rate of twisting is observed in the
peripheral part.

On decreasing the initial rate of twisting to zero the fluid gets twisted due to the frictional forces at
the disk. The distribution of the relative twisting along the radius is shown in Fig. 1II for this case. It is
evident from the graph that the relative twisting of the fluid inereases with the decrease of the flow rate of
air; at large flow rates of air (¢ < 1) the main drag comes from overcoming the forces of inertia of the air
itself and the drag forces at the fixed wall have practically insignificant role.

The fluid flowing into the gap may have initial twisting opposite to the rotation of the disk. The re-
sults of computations for this case are given in Fig. 2. As can be seen, at large flow rates (a = 1) the fluid
rotates in the direction opposite to the rotation of the disk; with the increase of the initial twist the disk
begins to exert a noticeable retarding effect. With the decrease of the flow rate (@ = 10) the retarding ac~
tion of the disk increases so much that the fluid changes its initial direction and begins to rotate with the
disk.

The change in the relative static pressure was also computed from the computed values of the relative
rate of twisting of the fluid in the gap (Fig. 31, II).

1t is evident that an increase of the initial twisting and the flow rate of the fluid through the gap be-
tween the rotating disk results in a sharper change of the static pressure along the radius and vice versa,

Similar computations were done also for centrifugal flow, which showed that with the inflow of a non-
twisted fluid a small change of the static pressure occurs, which is caused by a relatively small twisting of
the fluid from the rotating disk.

Thus the present investigation shows that a sharp decrease of the static pressure may occur in the
centripetal flow of air or gas between a rotating disk and a fixed wall. The use of this phenomernon would
permit to increase the efficiency of laboratory condensation between turbine stages by blowing in cold air
into the peripheral region with twist in the direction of rotation of the disk.

NOTATION
X is the dimensionless radius;
a ’ is the dimensionless parameter;
ry is the maximum radius of the disk along which the flow occurs;
Ty - is the initial radius of supply of the fluid between the rotating disk and the fixed wall;
r is the instantaneous value of the radius;
Vu is the rate of twisting of the fluid at the midpoint of the gap;
\Zu is the relative rate of twisting of the fluid in the gap at radius x;
Vu,1 is the initial circular velocity of the fluid in centripetal flow;
\711,0 is the initial circular velocity in centrifugal flow;
Py Py are the initial pressure in centripetal and centrifugal flow, respectively;
P is the static pressure of the medium at a radius r; '
Px,1s Px,2 are the relative static pressures of the medium for centripetal and centrifugal flow, re-
spectively;
fo) is the density of the fluid;
£4 is the coefficient of friction at the disk;
Ew is the coefficient of friction at the wall;
I is the relative coefficient of friction at the wall;
w is the angular speed of rotation of the disk;
mg is the mass flow rate of the fluid through the cavity;
Ci Gy are the integration constants.
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